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The optimum performance of an off-grid power system depends on economic and environmental criteria, and it belongs to 
the field of non-linear combinatorial multiobjective optimization. In this paper, the economic objective refers to the 
minimization of the total net present cost, while the environmental objective refers to the minimization of the total CO2 
equivalent emissions during the life cycle of system’s components, which can be wind turbines, photovoltaics, diesel 
generator and batteries. A binary evolutionary algorithm is proposed for the solution of the problem. The results show that in 
order to satisfy constraints related with system’s initial cost and reliability performance, the energy supply has to be 
provided mainly by the diesel generator and secondarily by the wind turbines. The contribution of photovoltaics is negligible, 
but it can be improved significantly in the future through the evolution of their manufacturing procedure, which is expected to 
cause reduction in their cost and their total CO2 emissions. 
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1. Introduction 
 
The majority of real-world problems involve 

simultaneous optimization of several objective functions. 
Generally, these functions contain often conflicting 
objectives that cannot be easily expressed in quantitative 
terms in order to compare them directly. Therefore, a 
compromise solution has to be sought in accordance with 
the preferences of the decision maker. The mathematical 
process of seeking such a solution is known as 
multiobjective programming. 

In the design of off-grid power systems, mainly two 
conflicting objectives are important: cost and pollutant 
emissions. Off-grid systems usually operate in isolated 
areas that are far from the grid. A fundamental 
characteristic of such systems is that they present low 
energy demand. A large portion of this demand is usually 
served by conventional generators such as diesel 
generators, although renewable energy sources (RES) 
technologies can be also used, as large amounts of RES 
are usually present in these areas. Conventional generators 
produce power on demand in an economic way, and when 
used in combination with RES technologies, they can 
provide backup power during times of insufficient 
renewable output. On the other hand, conventional 
generators emit large amounts of pollutants such as CO2, 
either by taking into account only the direct emissions of 
system’s operation, or by taking into account the 
emissions through the whole life cycle of these systems, as 
estimated through life cycle assessment (LCA) 

methodology. RES technologies do not emit during their 
operation, however, in their whole life cycle, they may 
produce significant amount of pollutant emissions. 

In a multiobjective optimization problem, such as the 
one studied in this paper, any two solutions can have one 
of the following two possibilities: 1) one solution 
dominates the other or 2) none solution dominates the 
other. The solutions that are non-dominated within the 
entire search space are denoted as Pareto-optimal and 
constitute the Pareto-optimal set. After a set of such non-
dominated solutions is found, a user can then use higher-
level qualitative considerations to make a choice 0. 

For the solution of multiobjective optimization 
problems numerous classical methods have been proposed, 
which can be classified into two distinct groups: direct 
methods and gradient-based methods 0. In direct search 
methods, only the objective function and the constraint 
values are used to guide the search strategy, whereas 
gradient-based methods use the first and/or second order 
derivatives of the objective function and/or constraints to 
guide the search process. However, in real-world 
problems, a number of complicating factors may occur, 
such as non-linearities, non-convexity, randomness, or 
non-standard constraints and feasibility conditions, which 
make the resulting model difficult to solve by these 
methods. In the last years, a large number of more 
appropriate algorithms for tackling such problems has 
been developed, mainly from the area of metaheuristics. 
Of these, the vast majority belongs to the category of 
evolutionary algorithms (EAs) 0. The main reason is that 



Y. A. Katsigiannis, P. S. Georgilakis 
 
1234 

EAs handle inherently a population of possible solutions, 
instead of a single solution, so they propose a set of 
alternative solutions in problems involving several 
objectives in one single simulation run. 

Various methodologies have been proposed for the 
economic and environmental evaluation of off-grid power 
systems. In 0, a multiobjective EA is developed that 
minimizes cost and pollutant emissions of such a system. 
HOMER software 0 uses the weighted sum method, as it 
initially considers a cost penalty associated with the 
pollutant emissions, and then optimizes the overall cost 
objective function. However, the previous mentioned 
methodologies consider only the direct emissions of 
system’s components. LCA analysis of off-grid power 
systems is implemented in 0 and 0, which however is not 
combined with economic analysis.   

This paper proposes an economic and environmental 
multiobjective optimization of an off-grid power system 
using an EA. The economic objective function is the total 
net present cost (NPC), while the environmental objective 
function is the total CO2 equivalent emissions. The main 
novelty of the proposed methodology is the consideration 
of LCA results for the calculation of CO2 emissions. The 
different locations of a product’s CO2 emissions during its 
life cycle are unimportant, as the incremental impact on 
global warming will be the same 0. The minimization of 
the CO2 emissions based on LCA of system’s components, 
which is considered in this paper, is extremely important 
since it minimizes the impact of the considered off-grid 
power system on global warming of our planet. 

 
2. Problem formulation 
 
This paper deals with the economic and 

environmental evaluation of an off-grid power system, and 
belongs to the category of non-linear combinatorial 
multiobjective optimization problems. This multioblective 
optimization problem has to fulfill the two objectives 
defined by equations (1) and (4) subject to the constraints 
(5), (6), and (7). In particular, the problem is formulated as 
follows. 

 
2.1 First objective 
 
Minimization of system’s net present cost: 

 
NPC)(1 =xfMinimize                      (1) 

 
NPC is calculated according to the following equation: 
 

),(CRF
NPC ,

Nd
C anntot=                             (2) 

 
where Ctot,ann is the total annualized cost, which is equal to 
the sum of the annualized costs of each system component, 
and CRF(d,N) is the capital recovery factor: 
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CRF(d,N) is a ratio used to calculate the present value of 
an annuity. In eq. (3) d is the discount rate and N is the 
lifetime of the project. 
 

2.2 Second objective 
 
Minimization of CO2 emissions based on life cycle 

assessment of system’s components: 
 

(LCA)emissionsCO)( 22 =xfMinimize    (4) 
 

2.3 Constraints 
 
Initial cost constraint: 

 
maxICIC ≤                                 (5) 

Unmet load constraint: 
 

∑
=

≤
8760

1
max

t
t ULUL                         (6) 

Non-negative components size: 
 

ixi ∀≥ 0                              (7)  
where IC is the initial installation cost of the system; ICmax 
is the maximum allowable initial cost of the system, t is 
the hourly time step index, ULt is the unmet load of the 
system at time step t; ULmax is the maximum allowable 
annual unmet load; and xi is the size of each system’s 
component i.  

 
3. Life cycle assessment in power systems 
 
LCA is usually limited to environmental issues only, 

although it could also imply the assessment of other issues, 
such as social or economic. LCA is divided into four 
phases: 
1. Goal definition and scoping.  
2. Inventory analysis.  
3. Impact assessment. 
4. Interpretation. 

In the power systems sector, LCA considers not only 
emissions from each component’s construction, operation, 
and decommissioning, but also the environmental burdens 
associated with the entire lifetime of all relevant upstream 
and downstream processes within the energy chain. This 
includes exploration, extraction, processing, and transport 
of the energy carrier, as well as waste treatment and 
disposal. The direct emissions include releases from the 
operation of power system’s components, processing 
factories, and transport systems. Moreover, it includes 
indirect emissions originating from manufacturing and 
transport of materials, from energy inputs to all steps of 
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the chain, and from infrastructure. 
Electricity generation from conventional sources is a 

major source of CO2, SO2, NOx, and particulate matter; it 
also produces large quantities of solid waste and 
contributes to water pollution. On the other hand, in 
renewable energy technologies, power generation emits 
negligible quantities of pollutants; however, there are 
considerable emissions that are associated with the 
material procurement, manufacture and transportation. 
Moreover, high levels of intermittent supply sources, such 
as solar or wind, require the installation of storage options, 
which should also be included in the LCA of the overall 
system. 

The LCA results that are focused on assessing 
greenhouse gas emissions of energy systems are expressed 
in terms of CO2 equivalent emissions. This means that 
CO2 and other greenhouse gases, such as CH4 and N2O, 
have been included in the assessment. However, other 
greenhouse gases have different effects on the climate and 
may have a different atmospheric life span. To take into 
account these differences, each greenhouse gas is 
converted to an equivalent of CO2 and is added to the 
inventory. For example, a gram of CH4 has a global 
warming potential of 21 and a gram of N2O has a global 
warming potential of 310, relative to a gram of CO2 over a 
100-year period 0. 

 
 
4. Evolutionary algorithms 
 
4.1 Overview 
 
EAs mimic natural evolutionary principles to 

constitute search and optimization procedures. The most 
widely used type of EAs is the genetic algorithms (GAs). 
GAs can be classified in two categories: 
1. Binary GAs: They borrow their working principle 

directly from natural genetics, as the variables are 
represented by bits of zeros and ones. Binary GAs are 
preferred when the problem consists of discrete 
variables. 

2. Continuous GAs: Although they present the same 
working principle with binary GAs, the variables 
here are represented by floating-point numbers over 
whatever range is deemed appropriate. Continuous 
GAs are ideally suited to handle problems with a 
continuous search space. 

The first step of a GA is the random generation of the 
initial population. Then a GA follows an iterated 
procedure that contains the following steps: 
1. Evaluation of objective(s) function(s). 
2. Reproduction of population, which makes duplicates 

of good solutions and eliminates bad solutions. 
3. Crossover, in which existing population members 

(parents) are mated in order to produce new 
population members (offspring). 

4. Mutation, which randomly changes the values at a 
portion of population members. 
In a single objective optimization, there is one goal: 

the search for an optimum solution. However, in 
multiobjective optimization there are two goals that are 
equally important: 
1. To find a set of solutions as close as possible to the 

Pareto-optimal set. 
2. To find a set of solutions as diverse as possible. 

Numerous GAs have been proposed in the literature 
for the solution of multiobjective optimization problems 0. 
The approach adopted in this paper is the non-dominated 
sorting GA   (NSGA-II) 0. 

 
 
4.2 NSGA-II 
 
The NSGA-II procedure includes the following steps: 

1. Combination of parent and offspring population in 
order to create the entire population set Rt, and 
execution of a non-dominated sorting to Rt. In case of 
constraints existence, a solution x dominates solution 
y if any of the following conditions are true: 
a) Solution x is feasible and solution y is not. 
b) Solutions x and y are both infeasible, but solution x 
has a smaller constraint violation. 
c) Solutions x and y are feasible and solution x 
dominates solution y. 

2. Descending sorting of each produced non-dominated 
set population according to crowding distance 
criterion, which estimates the diversity of each 
solution.  

3. Creation of offspring population from parent 
population by using the reproduction, crossover and 
mutation operators. 

 
 

5. Proposed methodology 
 
5.1 Chromosome representation 
 
The considered off-grid power system has to serve 

electrical load, and it can contain four component types: 
1. Wind turbines (WTs) of a specific type. 
2. Photovoltaic (PV) modules. 
3. Diesel Generator. 
4. Batteries of a specific type. 

The minimum size of each component is considered 
to be zero. The increment in each component’s size is 
constant; it is equal to 1 unit for WTs and batteries, 1 kWp 
for PVs, and 1kW rated power for the diesel generator. 
Due to the discrete formulation of components size 
increment, the type of the GA is selected to be binary. The 
encoding of the GA chromosome is shown in Fig. 1. It can 
be seen that the chromosome is divided into four parts; 
each one shows the size (in bits) of a system’s component. 
The length of the chromosome is determined by the 
maximum allowable number of components. The 
calculation procedure of this number differs according to 
component type, and it is estimated as follows: 
1. For WTs and PVs it is equal to the maximum number 

that does not violate the initial cost constraint: 
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)/int( maxmax WTWT CCICx =                     (8)  

 
)/int( maxmax PVPV CCICx =                    (9)  

 
where xWTmax is the maximum number of WTs, xPVmax 
is the maximum size of PVs in kWp, int(x) is the 
function that rounds x down to its nearest integer, 
CCWT is the capital cost of the WT, and CCPV is the 
capital cost of PVs per kWp. 

2. For the diesel generator, its maximum allowable 
installed capacity xDslmax (in kW) is the minimum 
value of a) the rated power that does not violate the 
initial cost constraint, and b) the minimum value that 
can satisfy exclusively the annual peak load ALp: 

 
)1)int(),/min(int( maxmax += pDslDsl ALCCICx     (10) 

 
where CCdsl is the capital cost of diesel generator per 
kW. 

3. For the batteries, their maximum allowable quantity is 
the minimum value of a) the battery units number that 
does not violate the initial cost constraint, and b) the 
minimum number of batteries that can satisfy 
exclusively a 4 day (96 h) average load, if the 
batteries are fully charged at the beginning of this 
period and without taking into account battery’s 
minimum state of charge: 

 

)1)/int(),/min(int(
96

1
maxmax += ∑

=
Bat

t
batbat CapALCCICx    (11) 

where CCbat is the capital cost of one battery, AL  is 
the mean hourly value of load demand, and CapBat is 
the battery capacity. 

 

 
 

Fig. 1. Example of a chromosome representation for an  
off-grid power system. 

 
 

5.2 Normalization of constraints 
 
In order to apply effectively the NSGA-II algorithm, 

the values of constraints (5) and (6) have to be normalized 
in the case that they are violated. The normalized violation 
of the initial cost constraint (5), ICV, is calculated by: 
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while the normalized violation of the unmet load 
constraint (6), ULV, is equal to: 
 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>
−

≤

=

∑∑
∑

∑

=

=

=

8760

1
max

8760

1
max

8760

1
max

if,

if,0

t
t

t
t

t
t

ULUL
AL

ULUL

ULUL

ULV  (13) 

where ∑ AL  is the total annual energy demand of the 
system. 

 
 

5.3 Economic evaluation 
 
The economic evaluation of the system is 

implemented through the calculation of NPC, which 
includes all costs that occur within the project lifetime, 
with future cash flows discounted to the present. The total 
net present cost includes the initial capital cost of each 
system component, the cost of any component 
replacements that occur within the project lifetime, as well 
as the cost of fuel for the case of diesel generator. 

The fuel cost for diesel generator is calculated by 
multiplying the diesel fuel price with fuel consumption. It 
is assumed that the diesel generator fuel consumption F (in 
lt/kWh) is a linear function of its electrical power output 0:  

 
PPF rated ⋅+⋅= 246.008415.0  (14)  

 
where Prated is generator’s rated power and P is generator’s 
output power.  

The calculation of WT’s power output is managed 
through the fitting of the Power Curve by a polynomial 
curve. The PV power output is analogous to the radiation 
that strikes the PV panel, and it is estimated by global 
solar radiation data and geographic location data. The 
adopted dispatch strategy is the cycle charging strategy, 
whereby whenever the diesel generator needs to operate to 
serve the primary load, it operates at full output power 0. 

 
5.4 Environmental evaluation 
 
The LCA CO2 equivalent emissions of power 

generation components (WTs, PVs and diesel generator) 
are calculated per amount of energy produced (kg/kWh). 
This approach is more appropriate than the kg/kW 
approach, as some power plants are used at full capacity 
for most of the year, while other are not present such a 
high availability 0. For batteries, the LCA CO2 equivalent 
emissions are given in kg/kWh⋅y. The values that were 
adopted in this paper are shown in Table 1. 
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Table 1. CO2 equivalent emissions of system’s components. 
 

Component CO2 emissions 
WT 0 0.017 kg/kWh 
PV (Mono-crystalline) 0 0.23 kg/kWh 
Diesel generator 0 0.85 kg/kWh 
Battery 0 62 kg/kWh⋅y 

 
 
6. Results and discussion 
 
6.1 Case study system 
 
In the considered off-grid power system, the project 

lifetime N is assumed to be 20 years and the discount rate 
d has been taken equal to 5%. The constraints parameters 
ICmax and ULmax have been set equal to 200,000 € and 100 
kWh, respectively. The annual peak load has been taken 
equal to 60 kW, while the wind and solar data needed for 
the estimation of WT and PV performance refer to the 
Chania region, Crete, Greece. The price of diesel fuel is 
assumed to be 0.6 €/lt. Batteries have been modeled 
according to the following technical characteristics per 
unit: efficiency equal to 85%, capacity equal to 7.5 kWh, 
minimum state of charge equal to 30%. 

The cost and lifetime characteristics of each 
component are shown in Table 2. The replacement cost is 
assumed to be equal with the capital cost. 

 
Table 2. Component characteristics. 

 

Component Capital cost Lifetime 
WT, with rated power 
equal to 10 kW 

7500  €/WT 
 

20 years 

PV 5000 €/kWp 20 years 
Diesel generator 150 €/kW 20,000 

oper. hours 
Battery 850 €/bat 10,000 kWh 
 

The obtained values for maximum components sizes 
are (eqs. (8)-(11)): xWTmax = 26, xPVmax = 40,  xDslmax = 60, 
xbatmax = 235. This implies that the WT quantity is coded in 
5 bits, PV and diesel generator sizes are coded in 6 bits, 
and battery quantity is coded in 8 bits. The total length of 
each binary chromosome is therefore 25 bits. 

 
 
6.2 NSGA-II parameter optimization 
 
For the implementation of the NSGA-II, a computer 

code in MATLAB was developed. The tests were 
performed at a laptop computer with Intel Pentium M 1.73 
GHz processor, 512 MB RAM memory in Microsoft 
Windows XP environment. The average time for the 
convergence of the GA was 63 minutes. 

For all simulations the population size of the GA was 
kept constant and equal to 100, as further increase in its 
size does not improve neither the quality nor the diversity 

of the obtained solutions, while a decrease in its size 
results in a significant reduction of the non-dominated 
solutions population. Moreover, after trial and error, a 
crossover probability of 0.9 is used in all simulations. 

The performance of the GA was tested according to 
number of generations, crossover type and mutation rate. 
Fig. 2 shows the effect of generation number in the non-
dominated set, when uniform crossover and mutation rate 
equal to 0.08 have been used. In both Figs. 2(a) and 2(b), it 
can be observed that the comparison of whichever two 
solutions of the non-dominated set is resulting a better 
value in one objective function and a worse value in the 
other objective function. Although there are no significant 
differences between the non-dominated sets of Fig. 2(a) 
and Fig. 2(b), the quality of the solutions in the 60th 
generation is slightly better. After this generation, no 
notable differences are observed. 

In Fig. 3, a comparison of uniform crossover (Fig. 
3(a)) and single-point crossover (Fig. 3(b)) has been done. 
It can be seen that for the same generation number and 
mutation rate, the uniform crossover operator presents 
better diversity of solutions. Fig. 4 depicts the effect of 
mutation rate in GA performance. A low mutation rate 
drives to a very poor non-dominated set, which cannot 
explore the entire range of solutions. 

The NSGA-II optimum configuration is presented in 
Table 3, while Table 4 shows the corresponding non-
dominated set members, as well as their objective 
functions values. Table 4 shows that all 22 non-dominated 
solutions combine a diesel generator with large rated 
power (48 kW in all cases, compared to 60 kW peak load) 
and a large WT number, which varies between 11 and 25. 
In the majority of solutions there are no PV panels, while 
their maximum size does not exceed 1 kWp. The absence 
of solutions in the range a) 585,000€ to 615,000€ for NPC, 
and b) 2,630 to 2,760 tons for CO2 emissions is explained 
from batteries presence. More specifically, the solutions 
that present higher net present cost (over 615,000€) and 
lower CO2 emissions (below 2,630 tons) contain batteries 
whose number varies between 9 and 30, while the 
remaining solutions do not contain any batteries. 

 
Table 3. NSGA-II optimum configuration. 

 
Parameter Value 
Population size 100 
Number of generations 60 
Crossover probability 0.9 
Crossover type Uniform 
Mutation rate 0.08 
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Fig. 2. Effect of generation number in the non-dominated 
set  (uniform   crossover,   0.08   mutation rate).   (a)   30  
                       generations, (b) 60 generations. 
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Non-dominated set - Single-point crossover
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Fig. 3. Effect of crossover operator in the non-dominated 
set  (60   generations,  0.08  mutation   rate). (a)  uniform  
               crossover, (b) single-point crossover. 
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Non-dominated set - 0.008 mutation rate
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        (a)  

    (b) 
Fig. 4. Effect of mutation rate in the non-dominated set (60 

generations, uniform crossover). 
(a) 0.08 mutation rate, (b) 0.008 mutation rate. 

 
Table 4. Non-dominated set members for optimum NSGA-II performance. 

 
Components size Objective functions values Non-dominated 

set member WTs PVs (kWp) Diesel (kW) Batteries NPC (€) CO2 emissions (tons) 
1 11 0 48 0 546,412 3,131.6 
2 14 0 48 0 547,031 3,007.5 
3 16 0 48 0 552,068 2,955.8 
4 17 0 48 0 552,752 2,917.5 
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Components size Objective functions values Non-dominated 
set member WTs PVs (kWp) Diesel (kW) Batteries NPC (€) CO2 emissions (tons) 

5 18 0 48 0 554,570 2,886.5 
6 19 0 48 0 557,244 2,861.5 
7 20 0 48 0 560,092 2,837.8 
8 22 0 48 0 568,715 2,809.8 
9 22 1 48 0 571,766 2,804.3 
10 24 0 48 0 576,927 2,779.2 
11 24 1 48 0 580,845 2,779.1 
12 25 1 48 0 584,617 2,761.8 
13 15 0 48 9 614,143 2,631.4 
14 16 0 48 9 614,650 2,596.5 
15 17 0 48 9 614,750 2,566.8 
16 18 0 48 14 615,195 2,513.5 
17 19 0 48 9 616,115 2,500.7 
18 19 0 48 17 617,187 2,480.4 
19 20 0 48 16 619,296 2,465.4 
20 21 0 48 17 621,106 2,436.3 
21 21 0 48 25 622,511 2,422.2 
22 22 0 48 30 622,739 2,358.8 

 
 
 
6.3 Sensitivity analysis 
 
Due to the fact that the PV panels manufacturing is a 

rapid evolving procedure, an optimistic scenario has been 
considered, which combines lower CO2 emissions with 
lower prices. For future conditions, the emissions of 
mono-crystalline PVs may decrease to 0.046 kg CO2 
equivalent/kWh 0. Moreover, a 50% reduction of PVs 
initial cost has been assumed. 

Using the GA parameter values of Table 3, the non-
dominated set for the new scenario is depicted in Fig. 5. It 
can be seen that the resulted solutions present lower NPC 
and CO2 emissions. After mapping the obtained results in 
a Table similar to Table 4, it can be observed that the cost 
and CO2 emissions reduction for PVs improve their 
penetration, which varies between 0 kWp (in only one 
solution) and 27 kWp. The diesel generator rated power 
ranges from 44 kW to 48 kW, while the number of WTs 
has been restricted in the range of 16 to 18. The batteries 
number does not differ significantly from the base case. 

 
Non-dominated set - Optimistic PV scenario

2200

2400

2600

2800

3000

3200

540000 560000 580000 600000 620000 640000

Net Present Cost (€)

L
ife

 C
yc

le
 C

O
2 E

m
is

si
on

s 
(t

on
s)

 
Fig. 5. Non-dominated set for the optimistic PV scenario. 

7. Conclusions 
 
A multiobjective evolutionary algorithm approach for 

the optimum economic and environmental performance of 
an off-grid power system that contains renewable energy 
sources technologies is presented in this paper, taking into 
account as environmental criterion the CO2 emissions 
during the life cycle of each system’s component. The 
obtained results proved the necessity of such an analysis. 
Although the photovoltaics does not emit during their 
operation, the large amounts of energy needed for their 
manufacturing result in high economic and environmental 
costs. On the other hand, wind turbines present much 
better performance than photovoltaics in both objectives 
and thus they have a significant portion in systems’ energy 
production. However, the fundamental component for the 
reliable and economic operation of such a system is the 
diesel generator, although it presents the highest CO2 
emissions. A future improvement in photovoltaics 
manufacturing may improve their contribution to the 
energy supply of such systems. 
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